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LINEARIZED THEORIES OF IONIZATION WAVES

: l II. + Introduction
| The positive colum of most D.C. gas discharges is a large luminous
j Tegion lying between the anode glow at the anode and the Faraday dark
space towdrd the cathode, (Fig. 1).- Often for discharge conditions of
' pa;rticﬁlar interest, because of their applications in laser technology,

the column can be seen'at any particular instant to have a regularly

striated appearance’ (Fig. 1). When first observed these waves were sonme-~
whfat of a mys< 2ryy. however, iix th;e paét fifteen years several models have
been proposed to describe such ionization waves, Among these are the
.modells of Pekarek (Ref 3)5, Weissglas and Andersson (Ref 14), and Swain
and Brown (Ref 12)., The primary basis for each of these models is the
use of a two sp‘eg:ies "c.hree moment treatment to describe small variations

" in local electric fields, number densities, drift velocities, and temper-
1

atures. These models differ in the exact form of the moment equations

Ed

i _ us!ed and in si'mplifyiné assumptions made. This report explores the
predictions of the straightforward one dimensional two species three
moment model of dischafge dis;curbbnces derived in Section II and, in

' ' Section III, compares these pr?diction‘s with the results of experiment

and with the predictions of the theories of Pekarek and Swain and Brown.
i =

>
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II. Theory

The Equilibrium Positive Column (Ref 2: 238-251) .

This discussion of the equilibrium positive column of a gas discharge
is intended to establish relationships which will prove useful in later
sections. The axial electric field strength E in the colum is approxi-
mate’y constant. A direct consequence of this, seen from the one dimen-
sional Foisson equation

q

= _0 - ~
= ;:-o-(x\‘i NJ =0 €y

%1%

N

is that electron and ion number densities, Ni and Ne respectively, are
approximately equal everywhere along the longitudinal coordinate of the
colum x. The primary charge carrier production mechanism in the column
is ionjzing collisions between fast'random electrons and neutrals, The
primary loss mechanism of charge carriers is ambipolar flow to the walls
of the tube, This ambipolar flow is set up when, prior to equilibrium,
electrons, due to their greater mobility, diffuse to the tube wall much
faster than positive ions., A radial field then exists such that the
wall is at a negative potential with respect to the rest of the column.
This field helps further induce ambipolar flow by tending to annul orig-

inal differences in numbexr density by pulling ions toward the wall and

. repelling electrons (Ref 2: 143-145)., Current in the column is also

approximately constant with most of the current being carried by the more
mobile electrons. The slower positive ions, mearwhile, balance the

electron space charge.
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Since current is constant and there is no build up of charge in
equilibrium, ionization rate must therefore balance ambipolar loss rate.

Making use of this fact Von Engle arrives at the differential equation

d2

+ N
dr? D

=0 . (2)

=11
°1%
)

where represents either electron or ion number density, r represents
the radial coordinate measured from the longitudinal axis of the tube, a
represents ionization rate per electron, and Da represents the coefficient

of ambipolar diffusion (Ref 2: 144). The solution to Eq (2) is

= J (x/a7D,) (3

where N) represents the equilibrium number density along the longitudinal

axis and Jo represents the zero order Bessel function. Assuming that at
the tube wall {r = R}, NR} = 0

(0]

o= & /R)? ©

where ;r represents the first zero of Jo'
Electron kinetic temperature Te can be obtained directly from Eq (4)

by solving

. 31 ’
Ap/s"7—v2’” z)?2
(5)

+
BN

where
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.- 3 1.
e o= Ap°/8qo7wme Vizx 2 X, (6)
. u+Te u+Vi
Pa g X 7
qV.
and X == (8)
e

(see Appendix A, Eq (103)). Here A represents the slope of the ionization
efficiency curve in ion pairs/m/Torr/voit, P, represents the pressure of
the neutral gas in Torr, u_ represents the ion mobility in m?/volt/sec,

q, represents the charge of an electron in coulombs, m, Tepresents electron

mass in kg, and Vi represents ionization potential of a neutral in volts.

Once Te is found from Eqs (5) and (8) then a can be found from Eqs (4)
and (7).
Equilibrium charge conservation is represented for the column by Eq

(2). The equations

@y =W B )
<V.> ..
. L r7e(i) .

express equilibrium conservation of axial momentum and energy respectively.
for electrons (ions) (Ref 4: 0, 61) (Ref 2: 125). InEq (9) Uy '
represents electron (ion) drift velocity, u'(+) represents_electron (ion)

mobility, and E represents axial electric field strength. In Eq (10)

Ke(i) represents the average 2lectron (ion) energy lost to a neutral per
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| »

e(i)
. : ' o
Ae(i) represents the electron (ion) mean frae path between collisions
h .

! } : :
collision, V> represents the average electron'(ion), random velocity, "
4 - LI

H .
with neutrals, and T0 and Ti arc neutral 'and ion kinetic temperatures
1 . o, '
respectively. For reference in a later scction Egs (9) and (10) will

appear as \ ’ !

!mc\’_ 1 !
- .~—1'Ué = E (11)
0 1 . N
|
I N ' '
1 1 \ , *
* * m.\) .
1+ : ;
U. =E ' . 12):
a, i \ o
1 ' 1
QUE = Ve Tg | ; (13)
) 1 ‘ : I
 qUE=V; (T - T) . (14)

' 1
I

1
where v_, is the electron (ion) momentum transfer collision frequency’

and v is the electron (ion) energy transfer collision freduency.=

eo (io)
. i !
'I'o is typically small with respect to Te in Eq (13) and has thercfore
' ! .
been omitted. ‘
i i H

The Basic Physical Mechanism g£ Striations E i

1

According to Pekarek, the basic factcrs in the proéuctian of moving
i ]

striations, the type of positive colum jonization waves of interest in
this report, are the dependence oé ioniza%ion ratée oﬁ 1o§a1 electron ;
tempexature, the production‘of space chargés and hence electric fields
due to the differenf diffusion rates of electrons and ions, and fﬁe !
changes. in lccal electron temperature caused by space charge fields

(Ref 9: 741) (Ref 10: 895). Assumipg thg above ﬁentiéned dependen%e
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I i . A
' of a on tlectron temperature, the sequential interaction of the-above to

’ : , produce moving striations is summarized by Lee, Bietzinger, and quscac}iien
as follows: : P C ' ' !

. : The striations are con51dcred to occur at a suff1c1ent1y ‘
igh gas pressure so that anbipolar diffusion conditions are
! operative, The mobility of the electrons is much larger than
that of the JOI‘lS and a disturbance mlthc concentration W111,
after a Short time, produce a positive space charge at a region
Yoo whefe the concentration is increaseéd. This space-charge elec-
! tric fiecld will cause a decrease in the electron temperature
(giving a dark 'region) in the region to ‘the anode side of the
original disturbarce, conséquently reducing the ion density.
; In turn, this dark region produces a negative space charge
! ' and an,increascd T, (forming a bright region) and thus an
increased n, 'td itS anode side, Thls assumptlon is in accord
with the expemmental profile of the mov1ng striations
' (Ref 11: 381). \ , \

| \
[ x
From the above explanation it is apparent that striatiofbphenomena

v & e weme o e n

- ot

1 H 5

! .
.can be modelled as small perturbations of the ionization rate o, th\e

charge carrier pumber densities N i and Ng» ¢lectron k1net1c temperature
!

b ! T and electric field E. Axial varlatlons in these quantities were the

Rryd
L (Y [Pty Sy

basis of the original Pekarek theory (Ref 6: 452) Ina .very -recent

model by 'Swain and Brown based on the first two ion moment equations and

"1 ' " the first threc electronmoment equations, smalliaxial perturbatlons of |

} * 1 v
electron drift velocity U,, ion drift velocity U;» amdI Veo with respect

' . to T were also considered, Swain. and Brown further consider N. always

equal to N aseume T to be negllglble, and allow radlal varlatlon in '

their basic and equilibrium equatlons. Q'I‘hey,.however, con51der no vari-

ation in radial velocities and only wave like axial variation of the
i
- 1
b remaining quantities in their first order linearized ‘equations. They
! I3
make no. attempt to perturb the amblpotar loss term.u (Ref 12:.' 1383-1386).

. The model dlscussed in the following sections is strictly a one dimensional

i
1 ' ' . ) o
! . . . . . 1
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model. In addition, Ni' is not considered equal to N o> an attempt is made
to vary the ambipolar loss temm, and perturbations of To v, with respect

to E, and Veo with respect to E are considered.

The Three Moment Equations®

The discharge conditions and placma oscillations discussed in this
paper are limited to those for which the motion of positive ions and
electrons can be adequately described by the first three moments of the
Boltzmann equation. Assuming fi the distribution function for the ith
species to be isotropic in a system drifting with an average velocity q,

the first three moment equations for any species are

1 N

3(nq,)
on 2l f —(af]
— t = dvi=x (15)
ot axz v ot)coll.
‘ mng...+ 9 = n<F>. --——-lao-g' + dv v .a_f.
g T Y 3%; U 2T ™ )= < Va{atj cont.
_(of
) IV d ('87:'] coll. (16)
3o .o 0) .5 M1 oomfeR) L1 5[
7\5t Y 3%, P* 7P 5%, Jg O 2 (8tjcoll. " 2 o9y, = “V{8t)coll.

of

“my [ fien,  an

where X, represents the position space coordinate in the #th direction,

t represents time, <F>, represents the sum of external forces averaged

The treatront discussed in the remainder of this section closely
parallels that of D. A, Lee (Ref 8: 1-19).
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over velocity space, "9.5 represents the kinetic stress tensor, m repre-
sents the particle mass of the species, p represents the pressure measured

by an observer drifting with velocity g,

1 —
qp = = '['\7 dv vzf ) (18)

and n = f & £ . (19)

v

Here the usual repeated subscript notation is used to indicate summation.
Eq (16) describes momentum transfer in the 2th direction. Assuming f to

be Maxwellian, the kinetic stress tensor %93 becomes

Ops = pﬁzj = nf§, . (20)

2] J

where T is the kinetic temperature of the species (Ref 1: 114-121). If
there is no applied magnetic fxield, the self field is neglected with
respect to the applied clectric field in the Lorentz force term, and all
other forces are neglected, then <i~’>£ reduces to zquz where z reprfzsents
charge nunber and sign, q, represents basic electronic charge and Bsz,
fepresentsl the 2th component of electric field strength. With these

assumptions and letting

| of
C cr‘7{5"6_}c011. (21)
’ - . of
MA, = 5 & Vz(é‘fl coll, (22)
_Mm = v |9
W=z I—- dv "z’z(ﬁ‘f] coll. (23)
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Eqs (15), (26), and (17) can be written with slight simplification as:

e
&

3(nq,)
) 2
82 3%, — Q (24)

m *Az’%qz (25)

3q
oT )

- . 2 2p.+ 8 m_

E R e AT 3P+~1(q9,%3 T] (26)
Moving striations propagate lonﬁtudinally in the positive column.

In order to simplify Eqs (24), (25), and (26) variations in g, E and X

will be concidered to take place only in the longitudinal or x direction

wherc x increases from anode to cathode. This is not of course a good

.- assumption in terms of what is actually happening in the colum since
.-radial variations in charge carrier velocity and electric field strength
exist and undoubtedly have their effect on local electron temperatin‘e
and particle production and loss. However, the solution of the much
simpler one dimensional equations does provide qualitative results and
an insight into the.more complex three dimensional problem. Thus, letting

q = {u,0,0},. E = {E,0,0}, and X = {x,0,0} Egs (24), (25), and (26) become.
’—ETN 2 +U =—==0Q (27)

L e N, ok i, (28)°

" 3u W, T, N, ; T, Q.
+ P P S M e (29)
N ot e 9X Nm_ 93x m_ 39X m e Ne

10
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. T, Iq E QU
P P e P e S A S (30)
ot iox N m, 90X mg oX ms i Nl_ _
3T, Ty, o, W, ) meue2 )
Tt et P 3w T 3Nl t 3P t Qs 'Te‘ (31),
aT. aT. oU. fa.U.2 )
i i, 2 i_ 2 2 : 0
et Uit T smAY 3l (30

Eqs (27)- (32) along with Poisson's equation

L

9L
oxX

Q

— 0
= L (N,
0

;7 N (33)

are a system of first order non-linear differential equations relating
Ne’ Ni’ Ue’ Ui’ Te’ Ti’ and E, The subscripts i and e denote ion and

electron quantities respectively.

The Collision Terms

represents particle production and loss due to collisions, As
previously mentioned, the primary charge carrier production mechanism is

ionizing collisions between fast electrons and neutrals. This is just

‘simply the rate of ionization per electron times electron number density

or aNe. Since the primary charge carrier loss mechanism, ambipolar flow
to the walls, is a radial phenomenon, no realistic charge loss model is
available. In order to balance charge produ:tion and charge loss in
equilibrium a contrived loss term '%'(Ni + Ne), similar to that used by
Pekarek, is included in this analysis (Ref 3: 857). Here T represents
the mean life time of the charge carriers. Tt probably depends upon both
aand T o hovever, since the nature of this dependence is unknown, it

will be considered constant throughout this treatment. Hence,

11
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Q= oM, - 1N +N) (34)

In equilibrium the acceleration of the electrons (ions) by the applied
electric field must be equal to the rate of their momentum transfer to

neutrals during collisions. Hence from Eqs (29) and (30)

i qE
A D 7o
Ae ol . (35)
e
iZq E
m 0
AT (36)
i
Therefore from Egqs (11) and (12) °
A, = -vU, (37)
Ai. = ‘\’+Ui (38)

In equilibrium Eqs (31) and (32) combined with Eqs (35) and (36) become

qBU, = mAU, = P " (39)
-2q BU; = mAU; = Py (40)
Therefore from Eqs (13) and (14)
P, = ‘vecTe : (41)
P, = Vi, (T; - To)- (42)

12
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The Characteristic Form of the Equations

With the collision terms modeled as in the previous section, Egs
(27) and (33) are a system of quasi-linear equations having the form
oy ayi

heé] D3
Asa*Byee = H (43)

where Ai 50 Bij and Fi are functions of the variables yj. The equations
of such a system can be written as an equivalent system of equations
each of which involves differentiation in only one direction in the x-t
plane at each point (x,t), provided there exist j vectors V = Vi’ i=

1, ..., j, such that j linear combinations of system (42) of the form

\

ViAij S \iBiJ. = = V;F; (44)
exist where
ViAij = WV.B, j (45)

for real A, If j such linear combinations do exist, then these equations
can be used to form an equivalent system of equations each having the

characteristic form

dy. 9.
VL -
[A T ]ViBij ViFy (46)

where the differentiation is in one direction only, along the curve
(x - xo) =) (t - to) (Ref 5: 103-107) (Ref 8: 10).
The A's associated with the system (27)-(32) are Ue’ Ue ta, Ui and
= ¥ = .§. -(33> i 1
Ui & a; where 3, =% Te/.ne and a =/ 3 Ti/mi-' Eqs (27)-(33) written in
characteristic form are:
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X i
‘e’:-: AT
. 1
- :
X "2 r . m h'
5:; o 2 aNe aTe 5 2 | e 2 . .
: é & “37Te 3, + Ny 3, 3 TeQ * ?Lp " Ml * 7 8’; Ye JNe 47
8 : )
E ’
o 2, MM s "o s g
B "3l tNies T 3T g ’“1%”1*“2"‘%;“1 Npo (49)
',’3' ;, \ } o) .
E b !
A I '
| e ey, Mo Ne e o 4E L ®e iz, 2 e
v o+ T + + 1
. :'é B a;\é eed g my aAé ee rpe e A Seee 3 my
\1: ' A H 1 |
% I . Q : 2 .
: +3 U i (49) and (50)
& : . 1 i
Eé
j T. oN. ou N. oT iZq E QU. N.P '
! 3 i1,y i, 7i7i_ 0 _ 2n 2 7ii
3 . — = £ N.a —"—f"'———'-—f—-‘a + A, — = N.A. U, + & ==
3 ; my aJ\i 11 a)\l m, axl i ( 3 i Ni ] 3111 3 m,
‘ : ! 1 1 !
b , +2U2 0 (S anll (52)
- -, . } L . .
l {“ 4 o [
4 9 ) ] 9 9 ’ 9 .
b . where =5t U psyar and syg——=wa+ (U .y * a_ . )%=, ,Poisson's
| ‘ Be() ot eI Iy T eICJ.) } e(ll) ox .
5 g Eq (33) is in characteristic form. . -
4 * ' S ]
o The Simplified Electron Equations ‘ ' N . i
3 L T ] \
| In the electron equations the time derivatives may be neglected fo
: ) 1
y any electron variable Y R since for phenomena of interest ' '
i B
;£ ’
. i ’
oY Y oY ! .
s £ e e e 1
kL 5t ] Ve m| | Uet adex (53)
"' !$ , . i ' : a
’ (Ref 6: 454). This is equivalent to saying that both,the electron drift
4 . . \
velocity Ue which is usually > 10°m/sec and the electron acoustic speed
a, usually > 10°m/sec are much greater than the phase velocity of the
- ionizztion waves which is usually < 10°m/sec. Making use of statement
i ! I !
% i
14 ‘
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(33) and using the Fact that Uezl« aez, qu (47), (49), and (50) can be

reduced to '
X :
| oN =_2_veo.e m v_UN, ) 3qEN
axI S Ue e e S % e
] . ! .
) ; . 1 1
Co + [OLNe - Wy + Ne):lg‘; (54)
RS
W vum q EU U %n
el -~¢c e 2 30 e, 4 21 e_¢e
5T T "5V, T 5T 5l - 70N + N)Igr— (59)
e e ee
CaT wow T T
b e__2 e e 2 - 1 e
p x 15 Ue" . 5 qu [O‘Ne T(Ni * Ne) ]UeNe (56)

where the relationships expressed by Eqs (34), (37), and (41) have been

substituted: for Q, 'Ae , and 'Pe respe‘;:tively.

The Nondimensional Linearized Electron: Equations

In & nommal equilibrium discharge Ne’ Ni’ Ue’ Ui’ Te’ T. and E are

approximateiy constant, Thus the equilibrium conditions resulting from

' Eqs (33), (54), (S5), and (56) are

N N H . .
P ‘ ‘ N, =N = N° %))
1 LI .
l o= -,-f_- (58)
1 | I * '
0
! : veoTe " o . 0
| e -q B0 = v, m, (59)
i ! e '

15
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where the zero supcrscript denotes equilibrium value. Since no radial
variation in number density is allowed, N°, the average number density
in any cross section of the column, is taken for the equilibrium number
density for both electrons and ions throughout the column. The variables
Ni’ Ne’ Ue’ Te and E are assumed to have the following form: Y =
Y% + yexp(ikx + s%) where Y represents any one of the above mentioned
variables, Y° its equilibrium value, and yexp(ikx + 4f) a small pertur-
bation of Y away from the equilibrium value with variation in space and
time as indicated,

As previously mentioned o may be considered to vary with T e V. with
E, and Ve, with both Te and E‘; therefore, small perturbations in these

appear here as

a=oa+oa' fe (60)
vsv_ +v e’ (61)

= : 1
Veo = Veo Ve, ¢ + Ve, Ze (62)

Ié

wherc ' (prime) denotes 5%; Te=Teo and ¢ (dot) denotes %T E=E°° o' can
be computed directly from Eq (6). Swain and Brown (Ref 12: 1383-1386)

consider v_ constant; however, according to Von Engle

(63)

when equilibrium discharge conditions are such that collisions between
electrons and neutrals nmay be considered elastic (Ref 2: 124). This
variation can be used provided the time to reach microscopic equilibrium

(approximately 10°° sec) is short compared with the period of oscillation

16
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of striations (approximately 107 sec)., For elastic ccllisions based on

statement (63)

v = -JI:T}—\) (64)

For inelastic collisions v_ will be apjrvoximated as constant; hence

v_ = 0. Plots available in the literature similar to that in Fig. 2 are

used to determine which type of variation is appropriate for a particuier

gas and discharge condition (see Table Ij. Based cn Fgg (10) and {13)

Ve o v 3

e m 2
v =K = K T (65)
€0 . >‘e }‘e e
From Eq (65)
21 Vey '
Véo = 2--——-0- -(66)
e
and v o=lgy (67)
S K €o

'Electron mean free path A is approximately constan: for discharge. con-
ditions of interest here (Ref 2: 33, 34)., For elastic eler run-neutral
collisions, the fraction of energy transferred x is constant and \.)eo = 0,
Plots available in the literature similar to that in Fig. 3 are used to
.determine which type variation is appropriate for particular gas and
discharge conditions (see Table I).

With the above assumptions the linearized nondimensional electron

equa*ions are

17
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2N

|

(3 v 7 1 21 .
. : ik, = [3' 2t & ]te 5 &, * g e -y - n) (68)
> wr e

3 3 7 1 e Y%

:‘ 3 = .= RIS 2 o - - € -

: 1kue (5 atza®y ]te T au, - J5ae - g Te. (nl ne) (69)
Bl

»

3 ikt=(-§-a-a'*t +—2—au +—2-ae+1(n.-n) (70)
; e \ 5 ele 5% F S S

‘ for discharge conditions such that momentum and energy are transferred
E | through elastic collisions and

I i

A :

Ly ikn = |2 ) P 3a+2ae-Lm. - 7
k| ikn, (5 a+al ]t¢ g au, + (5 a+ ¢ ackle Tg(ni n) (1)
j 3 N

E 7 3.2 .

] = |.2 d otk 2 L. - |2 L oapef

p T, [sa’“sa ue}te+5‘1ue [5“5“]e

SR

‘. : L 2

3 4 %

- -t -n) (72)
, e

: = |30 grx 2 2.2 1 -

3 1kte-(5a ae]te+saue+sa T aK e+7r-g-(ni ne) (73)
: for discharge conditions such that momentun and energy are transferred
3 through inelastic collisions. The nondimensional quantities, except a, in
n_on.
1 ) the abovetare the variables x, k, n e Nys and te denoting TJ;" kR, ﬁ-, ;j—,
u i

. 4 . . . K . ¢

e ; —e—;, and —e—o- respectively and the nondimensional constants aé", 'r;, K*,
. ! . Ue 'le TeoR er Eo . 02 02

_ . - e E° .

and IR denoting a - » To R = Ko and Ue me/Te respectively.

e

The constant a is defined by the equations

19
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“§ e\r% ! l
¥ i N ' “v_R qER mU °R : '
- ) a=-20 -. 0 - 88 . (74
g AV 4 « U 0 1 T Ol v‘li 0 - H ]
5 e e ‘e .
- . ) '
ﬂ . ) . 1
- The R appearing in the .above quantities denotes tube :radius, b
-k
E The Nondimensional Lincarized Ion Eguatlons '
,;4
o § In addition %o Eqs (57) and (58) the ‘ion equ111br1um equations
o resultlng from (33), '(48), (51), and (52) are; ' |
l;& % ) M ' \ » ¥
2. * '
' v (T4 -T) -
e L RO - 0y . Yo" 1 0 )
i % i qE® = vu;'m; = - R (75)
; i i 1
E (] Assume the variables N., N, U;, and T; also vary as Y Yo + JexpC:Llex + 88)

as in the case of the electron vanables. \) and vy do not vary with E

P
P Y s

since u,_ and the fraction of energy transferred, through collisions are

| b constant for ions (Ref 2: 113,,I 114). Ans' variation of Vi, with respect :

. ’ to T, is small and can be neglected based on the following: :

E 5 !

| i
| 8P, = §[ (T‘—T)]{~ z#avi" (T:° - T )z, = |

. | Rk e P TN e Phe S A B o

b ' o '

b . -

4 4 . 1 To ; , !
48 1Vi * 5V, 1 -:l-l—-; t~v; 2 (76)

3 T 11 .

gt . ,
: 1 ,

At ot

g
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-
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. ' + {% n.2 ¥ -g-.u ][1*% + %Sni - nej] =(78); and (79)

; H 1 U~°
The nondimensional variables :t, s, u, and ti are respectively;/t—é—,
H i . v H
! T ' ;
_— and —-B-! Except for b, thc nond1men51onal constants f, al"
U I‘i .
d

,

=
u,*

0 0 o
\)‘R OLRTe TUi i Ul

;. in the above equations are . , Ry and

, T w0 o ' 510
! 1 1 i . 1 N 3‘ Li mi
respectively.

0 20
vmU;R g ER

. b= - - \ (80)
' v . T, o
, T voT
[ 1 ' ) ‘ i
. . l 1 .
The linearized, nondimensional ‘Poisson's equation is ! ;
1
. .
i ! ! ikee, . - 81
se=n; - N e, ‘ (81)
a ] A ..
e E° o i
where € is ——-—o- P ' .
| . ! Rq N I : ! '

¥ 1 A 1 : I }

I *
' ]

The Dispersion Relation ‘
» [] 1

The electron equatjons either Eqs (68)., (69), and (70) or (71), (72),

'and .(73) and Eq (81) are solved simultancously 'to find t, and ¢ in teris

of n, such 'that
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e=C n, ‘ (83)

where C1 and C2 are complex. Eqs (77), (78), (79), and (81) can be

reduced to
ScaSs (5.5 2(fyxe .5 ike
[35+311\ (3 gui](aicl 3C2—{?—]]n1
+%bui»+[-%f—ik-s]ti=0 (8f1)
\ e 2ike:CZ] 5 4
2 P t& ~. >3 -
s + ik uicxiC1 5 My "ff"]ni+(31k 3b]u1
+ 2f+"‘ =
3 ik + sft. = 0 (85)
ikeC
Bk _b ooy Sy a5 S s+ S b’
].li 1C2+ ui(ai C1 T’{ . ni+ 3“15 '3‘1k11i+ui ul
+.i..}_(. .=
uitl 0 (86)

This system has a solution only for those combinations of s and k which
make the determinant of the matrix of coefficients zero (Ref 7: 157).

By setting

22
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5 (S 5 en. 5. ike)| (5.
—3-'8"'(-3-11( gaicl+3-C2;-[-r-—] glk 0

-
s + [ik - %uizai*cl + g'ui

[ - -
i ikeC .

1k - b 5 * - 1 2 5 5 ‘1 b 1k

.__ui > C2 t3 ui[ai C1 _T—Ti ] ;S * [.3“111\-»__] = (87)

a dispersion relation of form

D(s,k) = s® + B(k)s? + C(k)s + D(k) = 0 (88)

A}

is obtained where B, C, and D are complex,

Striation-like behavior can be inferred where real s(k) has a posi-
tive maximum (the s(k) at which disturbances are propagated exponentially
at their maximum rate) or where real s(k) has a relative negative maximum,
which would indicate only slight damping (the s(k) at which disturbances
are the least damped exponentially relative to those around them but not

so heavily damped as to be wndetectable). The phase velocity - -I—I%gé—)-

and group velocity - ngléé_)_ as well as frequency - IIST(T“

and wavelength
%—T- at the point of the striation-like behavior can then be computed from

the dispersion relation and compared with experimental results.

The Equilibrium Data

To solve the dispersion relation Eq (87), it is necessary to ‘corpute

« L ]
the nondimensional constants x*, a, b, £, o'*, al*, t

* r.% u. and
e i e * Ty o My NG U,

from the equilibrium values E°, p°, N°, U.°, Ue°, T°, Te°, Ti°, vy Yy

Veo? Vigr % o', and R, These values, all of which are in mks units
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unless otherwise specified, are obtained for this treatment from a combin-
ation of experimental data, basic theory, and the equilibrium equations
themselves. The gas, N°, T°, R, and p, are known or assumed based on
typical experimental values. Listed in Table I are qua;ltities useful in
computing gas discharge equilibrium conditions which can be found in

Von Engle (Ref 2),

Table I

Quantities Useful in Computing Gas Discharge Equilibrium Conditions

Quantity Symbol Units Source (Ref 2)
Ton Mobility at 1 cu 10" 'm?/sec/volt Table 4.1, p 114
Torr °C 0 -
" Axial Electric Field E° volt/m Fig. 125, p 245;
Strength Fig. 127, p 247
Slope of Ionization A ion pairs/m/Torr/  Table 3.7, p 63
Efficiency volt/electron
Electron drift velo- Ue 10%m/sec Fig, 61, p 124
city
Tonization Potential \A volts Table 3.6, p 59
Fraction of energy K Fig. 63, p 126
transferred/electron
‘neutral collision
' U m/volt © Fig. 63, p 126

Another excellent source for basic equilibrium data is Brown (Ref 4).
The ion mobility at 1 Torr and 0°C .u°+ adjusted for temperature and
pressure according to the equation

s T
u "l-l0 373

ll—‘

(89)

o

0
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can be used to obtain v_ and Ui° from Eqs (9).and (12) when E® is known

experimentally, The empirical formula

- 6
Vi, = (7 x 10, )po (90)

is used to obtain Vi - With Vi, T?, Ui°, and E known Ti° is available
from Eq (14).

From Von Engle U e° can be found knowing E° and p® (see Table I).
The electron mobility and hence v_ may then be found from Eqs (9) and

(). T1.°

e s O and o' can be obtained from Eqs (5), (6), and (8) by

making use of Von Engle (sece Table I) to obtain A and Vi‘ With v_, E°,

Ue°, and Te° now known, Ve:o is easily found from Eq (13). From Eq (58),

RI1o

== Sec Appendix B for sample calculation of equilibrium data.

The Mcthod of Solution

-/

~ To solve the dispersion relation Eq (87) k is assumed to be positive
real. Starting with some initial value of k, numerical values for C1
and C2 in Eqs (82) and (83) are ‘determined by solving simu.ltaneously
Poisson's Eq (81) and the electron equations either (68), (69), (70) or
(71), (72), and (73) depending upon whether the value of E°/p° was such
that inelastic collisions are important. Knowing the values of k, C1’
and Cz, numerical values for each element of the determinant in Eq (87)

are found. Evaluating this detemminant at this point, values for B, C,

and D in Eq (88) are obtained. Knowing its coefficients, the cubic

dispersion relation is then solved by Newton's Method to find the first
of its three complex roots. The quadratic formula is then used to find
the other two roots. k is then incremented to a new value and the above

process is repeated. k is most conveniently varied so that the results

25




AN . g N v

GEP/PH/72-13

are easily plotted logarithmically. By using electron Egs (71), (72),

¢

and (73) and setting k* = 0 the effect of not allowing v_ and v eo to

»

g vary with E is casily evaluated,

L B b,
SR G

fog ek

N

EAN
v

b2 s S Y L
C
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N
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I1I, Results

The Roots of the Dispersion Relation

. The real and imaginary parts of the solutions to the dispersion

relation Eq (87) for a mercury-argon discharge at 3 Torr (corresponding,

A e

roughly to the experiment described in Lee et al, (Ref 11: 378)) are
23 shown in'Figs. 4 and 5 respectively. The equilibrium data used to model
2 this 3 Tor: mercury-in-argon casc is included as a sample calculation in
ey Appendix B. Roots a and ¢ are heavily damped over the entire range of

k. Root b, however, exhibits a negative maximum at approximately k = 3,

peadicl sty

The narrow band of frequencies around this point are those for which

N PR s
ted

disturbances are the least damped and therefore the most likely to propa-

I—}—%—Eﬁi—%— , 1s less than

L one, a wave will be considered to be neutrally damped since for such

gate, If the damping or amplification per cycle, 2w

ST
o ame = e A £ ¢ A 0

waves there is a high possibility that damping or amplification may

L F . .

appear as a result of the rather crude approximations used to obtain the
A . " equilibriun conditions of the discharge modeled and not as a result of
ke the model itself. In fact, highly believable adjustments to the starting
i b " conditions for the cases examined here will actually cause the model to

Re(s)

predict Zn Tals) much less than one or actual neutral damping. Never-

theless, the damping per cycle predicted by the model in this case is

' 1,34, which even by the above criteria; indicates the presence of sig-

nificant damping. The striation frequency -and wavelength at the point
of least damping are 8.7 khz and 1,8 cm respectively. Striation phase

and group velocities ,. Yo anl Vg are 162 m/sec and -253 m/sec respectively.

3 AN I oy
SULTEN Ly

The wave predicted is a backward wave since the phase and group velocities

a ™

.. are in opposite directions. The experimental valucs of vp and vy are

)

27
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50 m/sec and -50 m}sec respectively, The striations in the experiment
are neutrally damped and occur over a narrow range of frequencies (Ref
11: 383). lhile backward waves over a narrow range of frequencies are
predicted by the model, the group and phase velocities predicted are of
the same order of magnitude but not approximately of equal magnitude as
indicated in the experiment. Additionally, the damping predicted by the

model does not show up in the experiment.

The Results of Other Theories .

Figs. 6 and 7 compare the real and imaginary parts respectively of
the striation roots of three different models for the same mercury-in-
argon case depicted in Fiés. 4 and 5, Root d is computed exactly as
root b except that v_ is helc% constant with respect to E rather than

considered proportional to EZ as in root b. Root d is included for t:wo1

reasons. It illustrates the effect of the additional assumption v_ « B
when compared with root b and compares favorably in the region of stria-
tion-like behavior with root e computed by Swain and Brown's model (Ref
12: 1383-1386). Root f is computed by the Pekarek theory as detailed
in Lee et al, (Ref 11: 381, 382).

Roots d and e predict neutrally damped waves with amplification per
cycle of .457 and .828 respectively. Root f predicts exponentially grow-
ing waves with an amplification per cycle of 2.79. Striation frequency
and wavelength at the points of maximum amplification are 3.5 khz and
2.1 cn for root d, 3.58 khz and 2.1 cm for root e, and 6..3 khz and 1.34
cm for root £. The corresponding group and phase velocities for roots ‘
d, e, and £ are respectively 80.6 m/sec and -81 m/sec, 79 m{sec and -89

m/sec, and 84.5 m/sec and -3% m/sec. The sharp peak in cach root
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indicates a rather narrow range of frequencies for which wave propagation

b aw

is allowed. The results predicted by the Section IT model with v_ # v_(E)

and the Swain and Brown model are very similar, Both agree well with
experiment predicting ncutrally damped backward waves over a n. rrow

frequency band with group and phase velocities of approximately equal

3L
e t MR ety War T e D) 8

. magnitude, The Pekarck theory predicts growing backward waves over a

narrow frequency band with phase and group velocities of,unequal but of

the same order of magnitude.

' The Characteristic Behavior for Large k

The characteristic behavior of the equations can be seen in the

: large k limit of the imagi‘nary parts of roots a, b, and c in Fig. 4.
Such behavior is expected since for variation of the form exp(ikx + &%)

- Eq (46) becomes

E (rik + &)V oy, = ViF; (01)

As k + » the right hand side of Eq (91) becomes negligibl. . th respect

to the left hand side; hence

| (Aik + 8)V;B, y; 0 ~ (92)
{

m
(Aik + 8) 20 (93)

iTm(s) *+ Re(s’ ~ Im(8) ~ , _ _
— B J\—vp. L)

¥ ' As f gets large the phase velocities for roots a, b, and c respectively

B !
E 0 0 . /Sqo0 0 . /S5m0
: approach +Ui , +Ui 3 Ti /mi, and +Ui W3 Ti /mi. In contrast, root

e in Fig. 7, based on Swain and Brown's model which assumes Ti = (0 and
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N, =N, throughout, has a;\ip in the large & limit of +U.° - -’5 T°/m.;

£
s

Swain and Brown's other root i(not plctured) has a phase veloc ty of !

. +U 0+ \/— °/m as k -+ o, Both roots b and c 1n1t1a11y parallel their
corresponding Swain and Brown roots;, however, at k = 30 the difference
in Ni and N o 8s expressed by Poisson's ecfuation becomes large enou‘gh to

separate the roots of the two' .iffer. tymodels toward their separate

asymptotic paths. | * ' .

5 Additional Commén ¢S

!
Results obtained by applying the,Section II model to numerous other '

£3
A

discharge conditions were generally similar to those discussed for the

-

mercury-in-argon case above, In particular good qualitative agrecment

- —— -

- was obtained with both the Pekarek theory prcdlctlons and the results of

the experiment described for the SO Torr neon diffuse dlscharge case

24
§ . -

’ !
. S described in an articie by, Garscadden and Lee (Ref 13: 578) The Section

IT model did not predict striation-like behavmr for the 35 Torr argon !
diffuse discharge case discussed in the same article. However, when the

- ) " » - ] 1 L3 -
fraction of energy transferred ‘in electron ncutral collisions k was,

considered constant w!ith respect to E or Ve 5 \)eo(E), the predictions '

of the model were in nuch better agreement with both the Pekarek theory

and experiment. The overall effect of lettmg Vo and v_ vary with E is

to increase the dampmg in the root contammg the strlatlon-llke behavior.

The striation-like behavior in the majority of cases other than the one
] ] ¥

o S b7 e

for mercury-in-argon discussed herc appeared in the root whose large k
; " phase velocity approaches Ui° rather than Uy 0. ,/-g— Tf/mi as in root b,

Fig, 4, The causc of such bchavior and whether there is any corresponding .
N I

; “~ physical significance has yet to be resolved,
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A C'onclusiohs, _ ) :
1

' 1 »
\ I R N !

Because df the over51mp11f1cat10n of the phy51cs involved and the
! I

small amount of data ava11ab1e ‘from the actual experlments modeled, any

comparlson made between the results predicted by any of the models dis-
I
cussed 11(..1‘0111 and those of experiment must be highly qualltatlve. In ’
A :

thls hlghly qualltatlve sense the predlctlons of all.the models dlscussed

t

in the results dgree moderately well w1th experiment, The better agree-

mcnt with experiment obtamed by the Sectlon IT model with v_ # v_(E)
1
(root 'd) and. by Swain and, Brown"' mddel (root ¢) than by the Sectlon IT

model with v_ = p_(E) (root b) indicates that for the 3 Ton mercury~
argon dlschalge " 115 perhaps better approum'ltcd as coqstant rather than
proportional' to E Z, 'Icndmg to conf1rm the abov\eqmllbrlum data in

Brown (similar data for an arbltrar)' gas is dep1ctcd in Fig. 2) 'nlike l

that in’Von Eng:glc (see Table I) _ihdicaites that this discharge gondi.tion

;.s not quite such that 1: can be CO]‘ISl(IleI\,d proportional to E 7 and that

u is in fact almost constant with respect to E for ﬂus opcratlng region
! . '

®Ref 4: S5). . C

! i
' As mentionied in Section ' III, the Section II model produced a similar
! 1 '

but more damped behavior when v_ and v

H
e, WeTe allowed to vary with E than

when they were heid constant. This seeins phys:rcal]y consistent l1n both
cases. In the v_ case the effects of a small change in local E would be
partlally offset by the ef fects of a correspondlng c.hange in 1ocal mobil- "
ity. In the Ve, €aS€ the effects of a small change Ain the local fract1on
of energy transferred due to a small change in E would hasten an opposing

!
change in electron temperature and hence electric field. The disagreement.

of experimental rcsults with severe damping predicted by the Section II
¥ B

»
i
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model for the briefly discussed 35 Torr argon case was probably caused
by the use of too large a value for k when computing the dispersion
relation. The fact that better results were predicted when Ve, Was held
constant with respect to E indicates that g cannot be reasonably inferred
from equiiibrium changes in k with respect to E (see Table I). It is
hoped that using a more reasonable value for K will, in the future, pro-
vide better results for discharge conditions where inelastic electron
neutrql collisions are important; h(‘)wcver, for the purpose of this report
the Section II model containing the assumption that Voo = veo(E) based on
the above method of obtaining k is useful only in inferring the possible
effects of such variation on ionization waves.

The fact that all models éxamined predict striation-like behavior
in region from k = 3 to k = § for the 3 Torr mercury-in-argon case indi-
cates that they are generally consistent with each other, This is not
surprising é:‘mce they are all based xon some linearized form of the moment
equations, For the cases examined the Section II model with v_ # v_(E)
and Veo # v eo (E) and thec Swain and Brown model predict results which are

in the best agreement with experiment. Solving the moment equations by

"ot assuming Ni =N, and Ti to be negligible is of some interest from a

mathematical point of view. However, the fact that Swain and Brown's
model which includes these assumptions and the Section II model with
v_# v_(E) and Veo # \)eo (E() which does not include these assumptions
predict almost identical striation bchavior (roots d and e), indicates
that the more complicated cubic dispersion relation Eq {87) obtained in
the case of Section II model offers little advantage over the simpler

quadratic dispersion relation obtained by Swain and Brown,
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— Appendix A
s
The Ionization Frequency Equafion
3 - . e e et e e e+
g ; Beginning with Von Engle's equation
3
: 3 :
-. o= N—r Ci(e - ei)ch(e)de (95)
) e’e,
1
f where
E b %_ _E
i ZN E-
£k N((e) = 2S¢ MaS- (96)
2 4' /T L m m
3 ;
s B .. [4€
b b . £, = [/, (97)
. . e
g = qui - (98)
€n = Te (99)
Ap0
. C= 22, (100)
0
and € is energy (Ref 2: 293), the ionization frequency a becomes
1 £
_ Z m
a= Apo 8/m.7 € E (e - ei)ee de (101)
I . Letting € = ¢; + X, Eq (100) reduces to
4 38
, e
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. 3 i X
Ap 7 m “n
a=—28/mme e X(e. + X)e "& (102)
qo e m 0 1
or
3 1 _qOVi
>fa Vs 7 T,
o= Ap0/8q 7men Vi —— (103)
e
where Vi

is the ionization potential in volts and A is the slope of the:

ionization efficiency curve in units of ion pairs/m/Torr/volt.
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" Appendix B

Sample Calculation of the Discharge Equilibrium Conditions
for the 3 Torr Mercury-in-Argon Case Discussed in Section III

Values for N° and T° are assumed based on typical discharge conditions
to be
N® = 1016 ;3
T = 5,52 x 10"2! (400°K)

R, P, E® and Te° from the experiment modeled (Ref 11: 383) are

A

R=.01lm

3 Torr

o
1l

E® = 180 volt/m

T’ = 2.08 x 107!° joules

The mercury-in-argon mobility uo+ at 300°K and 760 Torr taken from Brown

(Ref 4: 77) is

u°+ = ,00018 m?/volt/sec

u°+ corrected to 400° and 3 Torr is

u+ = ,0605 m?/volt/sec

From Eqs (9) and (11)

LA
< »
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q
v, = —%0= 7,7 x 10° sec’?
* g 2

From Eq (9)
0 20 —
Ui = E® = 10.8 m/sec
From Eq (90)
v: = 2,1x 107 gec™?
Jo
From Eq (75)
. 051 0
T,? = fhfifﬂl— + T

Ti° = 5,53 x 10" 2! joules

From Von Engle (see Table I) for electrons in argon

Ue° = -4 x 10°m/sec

and for mercury

Vi = 10,4 volts

From Eq (11)

E% . .
v o= - °° = 7,9 %10 ? sec !

ee

From Eq (13)
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From Eqs (4), (5), (7) and (8)

0

" . 2.u+Te = ' 3 o)
o = (2.4/k) —a——— 4,7 x 10° sec

0

.

Differentiating Eq (6) with respect to T o anli evalua'éing at Te = Te°, |

H
o =_°t_qovi+%
ol 0
Te Te 1

GEP/PH/72-13 '
[}
q U E° o _
v =--28 __=553x% 105 sec”?
eO T 0 H
e |

@' = 1,92 x 102? sec”! joules™?

From Eq (58) .
i I ! !
2 _ -y

' 'r=a-~4.25><10, sec

- '™ l
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